Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis

نویسندگان

  • Ensheng Weng
  • Yiqi Luo
چکیده

[1] We conducted a modeling study to evaluate how soil hydrological properties regulate water and carbon dynamics of grassland ecosystems in response to multifactor global change. We first calibrated a process-based terrestrial ecosystem (TECO) model against data from two experiments with warming and clipping or doubled precipitation in Great Plains. The calibrated model was used to simulate responses of soil moisture, evaporation, transpiration, runoff, net primary production (NPP), ecosystem respiration (Rh), and net ecosystem production (NEP) to changes in precipitation amounts and intensity, increased temperature, and elevated atmospheric [CO2] along a soil texture gradient (sand, sandy loam, loam, silt loam, and clay loam). Soil available water capacity (AWC), which is the difference between field capacity and wilting point, was used as the index to represent soil hydrological properties of the five soil texture types. Simulation results showed that soil AWC altered partitioning of precipitation among runoff, evaporation, and transpiration, and consequently regulated ecosystem responses to global environmental changes. The fractions of precipitation that were used for evaporation and transpiration increased with soil AWC but decreased for runoff. High AWC could greatly buffer water stress during long drought periods, particularly after a large rainfall event. NPP, Rh, and NEP usually increased with AWC under ambient and 50% increased precipitation scenarios. With the halved precipitation amount, NPP, Rh, and NEP only increased from 7% to 7.5% of AWC followed by declines. Warming and CO2 effects on soil moisture, evapotranspiration, and runoff were magnified by soil AWC. Regulatory patterns of AWC on responses of NPP, Rh, and NEP to warming were complex. In general, CO2 effects on NPP, Rh, and NEP increased with soil AWC. Our results indicate that variations in soil texture may be one of the major causes underlying variable responses of ecosystems to global changes observed from different experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecohydrological responses to multifactor global change in a tallgrass prairie: A modeling analysis

[1] Relative impacts of multiple global change factors on ecohydrological processes in terrestrial ecosystems have not been carefully studied. In this study, we used a terrestrial ecosystem (TECO) model to examine effects of three global change factors (i.e., climate warming, elevated CO2, and altered precipitation) individually and in combination on runoff, evaporation, transpiration, rooting ...

متن کامل

Grassland responses to global environmental changes suppressed by elevated CO2.

Simulated global changes, including warming, increased precipitation, and nitrogen deposition, alone and in concert, increased net primary production (NPP) in the third year of ecosystem-scale manipulations in a California annual grassland. Elevated carbon dioxide also increased NPP, but only as a single-factor treatment. Across all multifactor manipulations, elevated carbon dioxide suppressed ...

متن کامل

Linking above- and belowground responses to global change at community and ecosystem scales

Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among aboveand belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi...

متن کامل

Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost...

متن کامل

Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai–Tibetan Plateau

Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008